SsNoGATE

|
Synogate Anti-Replay Core

IP User Guide - v1.0




Page 2 Chapter Contents

Contents
Contents 2
1 Introduction 3
2 Functional Overview 3
2.1 Functionality . . . . . . . . .. 3
2.2 Structure . . ... 4
2.2.1 Anti-Replay Core Proper . . . .. ... ... ... .. ......... 4
222 Packet IF . . . . . . . . e 5
2.3 Reference Implementation . . . . . . . .. . ... ... .. ... ... ..., 5
3 Core Generation 7
3.1 Overview . . ... e e 7
3.2 Configuration File Basics . . . . . .. ... ... oo o 8
3.3 Controlling HDL Generation . . . .. .. ... .. ... .. ... ..... 9
3.4 Targeting Synthesis Tools . . . . . . . . . . ... ... 9
3.4.1 Quartus Integration . . . .. ... ... ... 10
3.4.2 Vivado Integration . . . . . .. .. ... oo oL 10
3.4.3 GHDL Simulation . . . . .. .. ... ... 10
3.5 Targeting Specific Technologies . . . . . . ... ... ... ... .. ...... 10
3.6 Controlling Tests and Waveform Export . . . . .. ... ... ... ... ... 11
3.7 Interface and Signal Descriptions . . . . . . .. ... ... ... .. 11
4 Parameterizing the Anti-Replay Core 12
4.1 Clock and Reset . . . . . . . . . 12
4.2 Packet IF Wrapper . . . . . . . . . . . e 13
4.3 Anti-Replay Core Proper . . . . . . . . . .. ... ... ... ... ... 13
4.4 Second Stage Memory . . . . . . ... 14

Synogate UG (haftungsbeschrankt) mail@synogate.com



Synogate Anti-Replay Core - IP User Guide Page 3

Connections | Window | Pipelining | Storage | Device | Fmax | ALM FF M20K
[#] [bits] MHZ) | [#] | [ | [#
. Arria 10 270 1932 | 2997 132
512 3968 moderate on chip Agilex-F 470 0541 | 3497 108
Arria 10 270 2747 | 4475 521
Agilex-F 470 4034 | 5380 425
Arria 10 220 3683 | 4451 129
Agilex-F 460 4455 | 6357 128

2048 3584 moderate on chip

16384 3584 moderate external

Table 1: Resource consumption for common configurations.

1 Introduction

This IP-Core implements an Anti-Replay protection for use in IPSec network pipelines. The
core is configurable wrt. the maximal number of connections, the window size, and the
number of pipeline stages. In typical configurations, the core can operate at well over 200
MHz on Arria 10 devices with a throughput of one replay check per clock cycle.

The architecture was carefully chosen such that the main storage can be offloaded to
QDR SRAM without impacting performance. Typical resource consumptions and timings
can be seen in Table 1. Sample vhdl code generations have been tested with recent versions
of Intel Quartus, Xilinx Vivado, and GHDL.

2 Functional Overview

2.1 Functionality

On a functional level, the Anti-Replay Core keeps track of a number of connections, each
of which is independent from the others. For each connection, it checks whether a given
packet, identified by its sequence number, has already been received. To this end, it stores
the highest so far received sequence number as well as a limited history of lower sequence
numbers that have already been received. This history is implemented as a window of fixed
size that moves with the highest so far received sequence number. The sequence numbers
have sufficient bits and typically are initiated to low values (e.g. 0) so that no wrap-around
needs to be considered.

The windows are physically implemented in memory and thus have a fixed physical size
which can be configured upon generation of the core. During runtime, the apparent window
size can be altered by changing a virtual window size. If this virtual window size is set to
a smaller value than the physical window size, the core simply behaves as if it had smaller
windows. The virtual window size may, however, also be set to a larger value than the
physical window size. In this case, sequence numbers that fall in between the physical and
virtual window sizes are considered unseen. Figure 1 illustrates this case. Upon reset, the
virtual window size defaults to the physical window size.

More specifically, for each replay check the core will test the sequence number and output
a code that indicates whether that sequence number had already been received or not as
well as why. Reasons for passing this test (being classified as unseen) are:

e The check for the connection is disabled.
e The sequence number is larger than any received so far.

e The sequence number falls into the physical window but has not yet been received.

www.synogate.com Synogate UG (haftungsbeschrinkt)



Page 4 Chapter 2 Functional Overview

Physical window Classification

Unseen
Seen (Highest so far)
Depends on contents of memory

Depends on contents of memory

Unseen (by definition)
Seen (by definition)

[o]=[re]ec] ]

Sequence numbers Virtual window

Figure 1: Physical and virtual windows in the Anti-Replay Core, and which areas are deemed
seen or unseen. Note that the highest sequence number is always deemed part of the window.

e The sequence number falls outside the physical but still into the virtual window and
is considered to be new by definition.

Reasons for failing this test (being classified as seen) are:
e The sequence number falls into the physical window but has been received before.

e The sequence number is older than the bottom end of the virtual window and is thus
considered to have already been received.

In addition to returning the code, the core updates its internal state accordingly.
For runtime configuration and control, the core accepts commands to:

e Resize the virtual window.

e Activate or deactivate the checks for individual connections.

e Reset a connection and set its highest so far seen sequence number to a specific value.
Details of the commands and returned opcodes can be found in the Interface Documen-

tation (see 3.7).

2.2  Structure
2.2.1 Anti-Replay Core Proper

[Memory | [Memory x1] [ Memory | [[Memory |

< W Control Logic |———>[ First Stage |—»{ Second Stage

Figure 2: High level block diagram of the inner part of the Anti-Replay Core.

The inner part of the Anti-Replay Core is purely stream based (see Figure 2). An input
stream of commands is ingested which can be any of the commands to runtime-configure
the core or a command to process (check) a sequence number. All commands are processed
in order at a rate of one command per clock cycle. For replay check commands, an output
stream returns result codes that indicate the result of the operation with a latency that is
fixed at runtime but depends on various configuration options of the core. The result codes
are returned in the same order as the replay check commands.

Synogate UG (haftungsbeschrankt) mail@synogate.com



Synogate Anti-Replay Core - IP User Guide Page 5

The core needs memory to store its internal state, the largest of which is the storage
for the physical windows, the bitmaps of which sequence numbers for each connection have
already been seen. The latter is split into two parts, a small first stage and a full sized
second stage. Since the second stage can be quite large for large window sizes and number
of connections, it can be configured to not use internal memory (e.g. BRAMS) but expose a
memory interface to which external fixed-latency memory, such as external SRAM, can be
connected.

2.2.2 Packet IF

©} ®
O Packet IF O

[[Memory |  [Memory x1] [ Memory | [[Memory |

incmd W’D’D’D’D{’_" Control Logic |——»{ First Stage |—»] Second Stage | out fesut

FIFO

Fifo Memory

FIFO

- R
e | I i

Figure 3: High level block diagram of the core in the packet IF configuration.

The “Packet IF” is a wrapper around the aforementioned Anti-Replay Core Proper that
exposes the input stream of commands, but features additional input and output packet
streams (see Figure 3). All packets are forwarded from the input to the output in order.

Requests (configuration commands or sequence number checks) can be issued during a
frame/packet or outside a packet. A request is considered to be during a packet if it occurs
on any cycle between start of packet and end of packet (including the SOP and EOP cycles).
It is also considered to be during a packet, if it is transmitted during bubbles of a packet
(between SOP and EOP but in cycles where the packet stream is not valid).

If a replay check request is issued during a packet, the packet stream is delayed with
an internal fifo to bridge the latency of the Anti-Replay Core, such that the result of the
request can be output at the latest with the last beat of the packet. More specifically, if a
request is issued with the EOP of the input packet stream, its result is guaranteed to arrive
together with the EOP of the same packet on the output stream.

If no request is issued during a packet on the command stream, the packet is forwarded
with minimal delay, but in order with other packets. Details about the interface and example
waveforms can be found in the Interface Documentation (see 3.7).

2.3 Reference Implementation

A reference implementation of the core’s functionality is included in the c4++ source code in
source/tests/AntiReplayCoreModel.{h/cpp} in the class AntiReplayCoreModel. Note
that this is an implementation of the inner Anti-Replay Core Proper.

For brevity, only the most relevant parts are shown here. The structs Cmd and Result
mirror the input and output signals and as described in the Interface Documentation (see 3.7)
where a description of the commands and their bit representation can be found as well. Note

www.synogate.com Synogate UG (haftungsbeschrinkt)



Page 6 Chapter 2 Functional Overview

that the reference implementation has no limit on the number of connections, while in the
actual core a limit is imposed by the configuration options.

class AntiReplayCoreModel {
public:

3 struct Cmd {

uint64_t opcode;

5 uint64_t connectionIndex;

uint64_t sequenceNumber;

uint64_t windowSize;

};

~

struct Result {
11 bool valid;

uint64_t code;
13 };

15 Result execute(const Cmd& cmd);
protected:

7 struct SaState {

bool active = false;

19 std::set<uint64_t> seen;

};

uint64_t m_physicalWindowSize = 64;
23 uint64_t m_virtualWindowSize = 128;

25 std::map<uint64_t, SaState> m_state;

27 uint64_t update(SaState& sa, uint64_t sequenceNumber);

};

AntiReplayCoreModel::Result AntiReplayCoreModel::execute(const Cmd& cmd)
31 {

Result result = { .valid = false };

33 switch (cmd.opcode)

{

35 case 0: // OpUpdate

result.code = update(m_state[cmd.connectionIndex], cmd.sequenceNumber);
37 result.valid = true;

break;

39 case 1: // OpDeactivate

m_state[cmd.connectionIndex].active = false;

11 break;

case 5: // OpActivate

13 m_state[cmd.connectionIndex].active = true;

break;

15 case 2: // OpSetSeqNr

m_state[cmd.connectionIndex].seen.clear();

A7 m_state[cmd.connectionIndex].seen.insert(cmd.sequenceNumber) ;
break;
49 case 3: // OpSetWindowSize
m_virtualWindowSize = cmd.windowSize;
51 break;
default:
53 assert (! "unknown opcode");
}

55 return result;

}

uint64_t AntiReplayCoreModel::update(SaState& sa, uint64_t sequenceNumber)
59| {

if (!sa.active)

61 {

return 3; // PassCheckDisabled

63 ¥

else if (sa.seen.empty())

65 {

assert (!"sa not initialized");

67 return -1; // undefined

}

69 else if (uint64_t maxSeqNbr = *sa.seen.rbegin(); maxSeqNbr < sequenceNumber)
{

71 sa.seen.insert (sequenceNumber);

return 1; // PassAboveWindow

}

Synogate UG (haftungsbeschrankt) mail@synogate.com




Synogate Anti-Replay Core - IP User Guide Page 7

else if (maxSeqNbr - sequenceNumber < std::min(m_physicalWindowSize,
m_virtualWindowSize))
{
if (sa.seen.contains(sequenceNumber))
{
return 2; // FailReplay
}
else
{
sa.seen.insert (sequenceNumber);
return 7; // PassInPhysicalWindow
}
}
else if (maxSeqNbr - sequenceNumber < m_virtualWindowSize)
{
return 5; // PassInVirtualWindow
}
else
{
return 0; // FailBelowWindow
}
}

3 Core Generation

3.1 Overview

This IP-Core is written in Gatery, a C++ based Hardware Construction Library that allows
IP-Cores to be build in a highly flexible and customizable way. The purpose of this section
is to describe common concepts of this approach and how to make use of them in your
workflow. If you are already familiar with the structure of Synogate products, you can skip
ahead to Section 4 where product specific options and parameters are discussed.

IP-Core in Gatery Executable Hardware description
(Software) "Generator" in common HDL (e.g. VHDL)
I . = BEGIN— 1 |
—_—— O |EI= = s
} e — END;
Compilation Execution w. parameters

Figure 4: The three levels of the IP-Core. See text for details.

This documentation is bundled with:
e a full copy of the original source code (source/ subfolder),
e precompiled binary executables called the generator (in the package’s root folder),

e and sample exports of the IP-Core for a couple of the many possible parameter choices
(sample/ subfolder).

The generator arises from the compilation of the bundled C++ source code. Its purpose
is to generate hardware description files for specific parametrizations of the IP-Core (see
Figure 4).

Your license for this IP-Core states exactly what you are allowed to do with the code
and generators and is the binding document in this regard. Usually, however, you are

www.synogate.com Synogate UG (haftungsbeschrinkt)




Page 8 Chapter 3 Core Generation

allowed to make modifications on any of those three levels: You may directly modify the
generated outputs although it is not advisable. You may reinvoke the generator with different
parameters if e.g. your requirements change. But you may also make modifications in the
C++ source code if you require changes that can’t be achieved with the exposed set of
configuration options. Since invoking the generator with different parameters is the most
common mode of customization, this document focuses on this aspect. Details on how to
use Gatery can be found on the gatery website!.

The generator is a command line program that is controlled through a human readable
YAML configuration file. Sample configuration files can be found with the sample exports
in the subfolders of sample/ that can serve as a template for further modifications. The
configuration file is passed to the generator as a command line argument:

# Generate core
| ./anti-replay-core custom_core_config.yaml

Usually (subject to the configuration file), the generator performs the following opera-
tions when generating an IP-Core:

1. Build internal representation of the IP-Core according to the given or default param-
eters.

2. Export the IP-Core as vhdl.

3. Run a top-level fuzzing testbench on the internal representation with an internal sim-
ulator.

4. Run a top-level demonstration testbench (for generating documentation waveforms)
on the internal representation with an internal simulator.

5. Export the top-level fuzzing testbench to vhdl.
6. Export the top-level demonstration testbench to vhdl.
7. Export the Interface Documentation.

8. Export a vhdl package called interface_package that contains all relevant constants,
codes, and parameters derived directly or indirectly from configuration options.

Section 4 discusses in detail the configuration file parameters that are unique (or of
specific interest) to the Anti-Replay Core. The following sections instead focus on the more
general parameters.

3.2 Configuration File Basics

The configuration file is a yaml file that controls aspects of the generation (such as which
directory to export to and which steps to perform) as well as configuration options of the
IP-Core. However, all configuration options are optional. If the generator is invoked with
an empty file, it will use default values for all aspects of the generation. The chosen configu-
ration options for the IP-Core (default or explicit) are listed in the Interface Documentation
(if its generation wasn’t disabled).

Whenever filesystem paths are specified in the configuration file (e.g. for where to export
the vhdl code or Interface Documentation to), the paths allow injecting environment vari-
ables by bracketing them in ${ }. For example, in a path of the form ${customEnvVar}/file

Ihttps://wuw.synogate.com/gatery.html

Synogate UG (haftungsbeschrankt) mail@synogate.com

.vhd


https://www.synogate.com/gatery.html

Synogate Anti-Replay Core - IP User Guide Page 9

the first part would be replaced with the environment variable customEnvVar. In addition,
${BinaryPath} is replaced by the path to the generator executable, ${ConfigPath} by the
path to the config file, and ${CurrentPath} by the current working directory.

3.3 Controlling HDL Generation

By default, the generator exports the IP-Core as vhdl (2008). The exported code and all
related files are written into the vhdl/ subdirectory relative to the current working directory.
The defaults can be overriden with the following options (or subsets thereof):

vhdl:
# If set to yes, will disable vhdl output
disable: no
# Path to export vhdl code to
path: vhdl/
# Path to export testbenches to
testbench_path: vhdl_tb/
# Library name to use in case import scripts or project files are generated
library: AntiReplayCore
# Whether and where to create an instantiation template
instantiation_template_vhdl: vhdl/ip_core_inst.vhd

disable Disables the vhdl export. Defaults to disable: no.

path Where on the filesystem to export the vhdl code to. The path can point to a
directory, as in above example, or to a file, e.g. path: vhdl/AntiReplayCore.vhd. In the
latter case, all entities and packages are concatenated into a single vhdl file. Defaults to
path: vhdl/.

testbench_path Where on the filesystem to export the testbenches and associated files
to. If testbench_path is not explicitely given, the default is the same directory as path.

library If project files are generated, the default is to place all entites and packages into
a library of a suitable name. This library name can be overriden with the 1ibrary option.

instantiation_template_vhdl Where on the filesystem to place the VHDL instantia-
tion template. Use No to disable generation of the VHDL instantiation template. If
instantiation_template_vhdl is not explicitely given, the default is the same directory
as path.

3.4 Targeting Synthesis Tools

The export can be attuned to various tools as described in the following sections. These
may generate stand-alone project files, .tcl scripts for easy integration into existing project
files, clock/constraint files, and so on. They may also alter the generated vhdl code by
adapting attributes to the vendor specific style. The synthesis tool can be chosen with the
synthesis_tool parameter.

The default is:

synthesis_tool: none

www.synogate.com Synogate UG (haftungsbeschrinkt)




Page 10 Chapter 3 Core Generation

3.4.1 Quartus Integration

The export can be attuned to Intel Quartus by choosing synthesis_tool: intel_quartus
with the following effects:

e Generation of a standalone project file with virtual pins suitable for resource consump-
tion and timing analysis.

e Generation of a .tcl script for integration into existing Intel Quartus projects.

e Generation of Modelsim .do project files for the exported fuzzing and demonstration
testbenches.

e Generation of an Intel Quartus compatible .sdc file for clocks for stand alone timing
analysis.

e Generation of an Intel Quartus compatible .sdc file with constraints and path at-
tributes.

e Adaptation of attributes inside the vhdl code to the Intel Quartus style.

3.4.2 Vivado Integration

The export can be attuned to Xilinx Vivado by choosing synthesis_tool: xilinx_vivado
with the following effects:

e Generation of a .tcl script for integration into existing Xilinx Vivado projects.

e Generation of an Xilinx Vivado compatible .xdc file for clocks for stand alone timing
analysis.

e Generation of an Xilinx Vivado compatible .xdc file with constraints and path at-
tributes.

e Adaptation of attributes inside the vhdl code to the Xilinx Vivado style.

3.4.3 GHDL Simulation

The export can also export support files for simulation with ghdl by choosing synthesis_tool:
ghdl with the following effects:

e Generation of a bash/shell script that processes all files and runs the fuzzing and
demonstration testbenches.

3.5 Targeting Specific Technologies

While the choice of a synthesis tool affects how synthesis attributes are translated (which may
be target device specific), the generator will not automatically target a specific technology
or device family based on the synthesis tool. Such a target technology must be specified
explicitely.

By default, the generator does not target any specific technology or fpga device. Instead,
it produces plain vhdl code and makes reasonable assumptions about technology capabilities
such as memory latencies.

To target a specifc fpga device, the vendor and device family must be specified:

Synogate UG (haftungsbeschrankt) mail@synogate.com



Synogate Anti-Replay Core - IP User Guide Page 11

target_technology:
vendor: intel
family: Arria 10
device: 10AX115N2F40I1SG

If the family is optional and will be inferred if a device is specified. Vice versa, if no
device is specified, a reasonable choice will be made from the family.

So far, only choices regarding memory pipelining and memory macro instantiations are
based on the selected target technology. However, future versions may also finetune pipelin-
ing aspects based on speedgrades, so selecting the correct device may be beneficial.

For vendor: intel, the generator supports the families:

e family: MAX 10

e family: Cyclone 10

e family: Stratix 10

e family: Arria 10

e family: Agilex

For vendor: xilinx, the generator supports the families:
e family: Kintex Ultrascale

e family: Virtex Ultrascale

3.6 Controlling Tests and Waveform Export

The generator contains an internal simulator. It is used to simulate a small demonstration
testbench but can also run a larger fuzzing test. The results of these simulator runs are used
to create vhdl testbenches, but can also be exported as waveforms.

waveforms:
disable: No
path: vhdl/

fuzzing_test:
num_batches: 1
num_cycles_per_batch: 10000
report_progress: true

The waveforms can be disabled and their output path can be changed, similarly to the
vhdl output. The fuzzing test can be disabled by setting num batches: 0. Otherwise it
runs multiple batches of num cycles_per_batch cycles each. Since simulation can take
significant processing time, the generator can report its progress on the command line with
report_progress: true.

Keep in mind that for large fuzzing tests, the waveform files and the testbench stimuli
files can grow to significant file sizes.

3.7 Interface and Signal Descriptions

Changing the configuration of the IP Core can have significant effects on the interface of the
IP-Core. Signal widths, latencies, but also the registers of memory mapped interfaces can
change. To prevent confusion, the generator produces an Interface Documentation for the
specific choice of IP-Core settings. By default, the generator exports this documentation

www.synogate.com Synogate UG (haftungsbeschrinkt)




Page 12 Chapter 4 Parameterizing the Anti-Replay Core

into the doc/ subdirectory relative to the current working directory. It can be disabled with
the disable parameter. The location of the documentation output can be changed with the
doc parameter. The target directory is created if it doesn’t exist.

doc:
disable: no
path: doc/

The generated Interface Documentation is html based and can be opened in any com-
mon browser through the entry file doc/index.html. Detailed descriptions of the interface
signals, block diagrams, register tables (if applicable), and signal waveforms can be found
there.

4 Parameterizing the Anti-Replay Core
The following describes configuration settings that are unique to the Anti-Replay Core or of

specific interest. The Anti-Replay Core is distributed with three sample configuration files.
It is recommended to use these as the basis for further modifications.

4.1 Clock and Reset

The core only has a single clock that can configured as follows:

clocks:
clock:
period: 100 MHz
reset_type: synchronous
reset_active: high
initialize_registers: Yes
initialize_memories: Yes

period The intended speed of the clock. It can be specified as a period in s, ms, us, ns,
or ps. It can also be specified as a frequency in Hz, KHz, MHz, GHz, or THz. The units are not
case sensitive. This only affects the generated clock .xdc file and the timescale of waveforms
in the Interface Documentation but is expected to affect e.g. pipelining decisions in future
versions. The setting defaults to period: 100 MHz.

reset_type The reset mode to implement for the registers. Can be synchronous for
clock synchronous resets or none. The setting synchronous also triggers the generation
of initialization logic for memories that need to be reset to specific values. In this case,
the required duration of the reset can be found in the Interface Documentation and in
the vhdl Interface Package. If the core is configured with reset_type: none, registers
must be initialized by default values (see below). The reset type defaults to reset_type:
synchronous.

reset_active Can be high or low depending on whether the reset is active high or active
low (negated). The default is reset_active: high.

initialize_registers Whether to initialized registers with their reset values as default val-
ues in vhdl. This results in the registers already having their reset value after power-on
on fpga devices. This setting must be initialize registers: Yes if reset_type: none.
The default is initialize registers: Yes.

Synogate UG (haftungsbeschrankt) mail@synogate.com




9

Synogate Anti-Replay Core - IP User Guide Page 13

initialize_memories Whether to initialized memories with their reset values as default
values in vhdl. This results in the memories already having their reset value after power-on

on fpga devices. This setting only affects RAMs, not ROMs. The default is initialize memories:
Yes.

4.2 Packet IF Wrapper

The Packet IF wrapper mates the stream based Anti-Replay Core to an Avalon stream of
potential network packets. The width of the Avalon stream as well as its auxiliary signals
can be configured:

instance:

frame_stream:
data_width: 16
dataBitsPerSymbol: 8
# Remove setting to remove channel signals
channel_width: 1
# Remove setting to remove error signals
error_width: 1
# Remove setting to remove userdata signals
userdata_width: O

data_width Controls the width of the data and, by extension, empty signals. Defaults to
data_width: 16.

dataBitsPerSymbol Indirectly controls the width of the empty signal. Defaults to dataBitsPerSymbol:
8.

channel width The width of the channel signal in bits. Can be zero, in which case
the channel signal is present in the port map, but with a zero bit width. Defaults to the
channel signal not being present in the port map.

error_width The width of the error signal in bits. Can be zero, in which case the error
signal is present in the port map, but with a zero bit width. Defaults to the error signal
not being present in the port map.

userdata_width The width of the userdata signal in bits. Can be zero, in which case
the userdata signal is present in the port map, but with a zero bit width. Defaults to the
userdata signal not being present in the port map.

4.3 Anti-Replay Core Proper

The inner Anti-Replay Core can be configured wrt. to its limits (windows sizes, connections)
as well as memory and pipelining tradeoffs:

instance:
/:
connection_addr_width: 9
virtual_window_width: 17
sequence_number_width: 64

AntiReplayO:
window_addr_width: 12
memory_word_width: 128
pipelining: moderate

www.synogate.com Synogate UG (haftungsbeschrinkt)



Page 14 Chapter 4 Parameterizing the Anti-Replay Core

connection_addr_width Controls the number of supported connections, which is 2¢ with
c being connection_addr_width. The required memory of the core scales roughly linear with
the number of supported connections (2¢). Defaults to connection_addr_width: 9.

virtual window_width Controls the maximal virtual window size, which is 2V with v
being virtual window_width. This should be at least window_addr _width and is often the
same. Note that the highest sequence number received is always considered part of the
windows (physical and virtual). Defaults to window_addr width: 17.

sequence_number_width Sets the sequence number range from 0 to 2° — 1 with s being
sequence_number_width. For large number of connections (large connection_addr_width),
this setting has some influence on required internal memory but is usually dwarfed by the
second stage memory. However, it is often dictated by the application scenario. Defaults to
sequence number_width: 64.

window_addr_width Controls the size of the physical window. The total physical window
size is 2™ — m with n being window_addr _width and m being memory word width. The
required memory of the core scales roughly linear with physical window size. Note that the
highest sequence number received is always considered part of the windows (physical and
virtual). Defaults to window_addr width: 12.

memory_word_width Width of the second stage memory data interface. The memory
requirements of the first stage memory scale reciprocally with memory word width. If the
second stage memory is external, a wider interface will thus reduce the on-chip memory
requirement. For configurations without external memory, this parameter should be tuned so
that the available sram block address bits are not exceeded. Defaults to memory _word width:
128.

pipelining Gives corse control over how many pipeline stages are used to trade latency
and area with clock rates. The setting supports three levels:

e pipelining: minimum places the minimal amount of registers only, which is registers
for memories and registers for the output of the core.

e pipelining: moderate places extra registers for good clock rates.

e pipelining: aggressive splits large comparators and multiplexers for extra register
stages. Useful for high clock rates, but significantly increases the core’s latency.

Increasing the amount of pipelining improves Fmax, but also increases the register consump-
tion and, because of the core’s latency, increases the fifo sizes. For the actual number of used
pipeline stages refer to the generated Interface Documentation or the generated interface
package.

The Generator allows further, more fine grained customization of memory and logic
pipelining with which it can be pushed to very high frequencies. If the core hits a timing
limit, contact Synogate with the critical path that failed and we will try to propose further
configuration settings for the specific problem.

4.4 Second Stage Memory

The second stage memory is the storage for the physical windows, the bitmaps of which
sequence numbers for each connection have already been seen. It is typically the largest

Synogate UG (haftungsbeschrankt) mail@synogate.com



Synogate Anti-Replay Core - IP User Guide Page 15

memory of the core and consumes significant resources. While potentially all memories can
be configured to be external memories, the second stage memory is the best choice if memory
is to be offloaded.

To turn the second stage memory into external memory, use the following template:

instance:
SecondLookupStage0/scl_memoryO:
type: EXTERNAL
readLatency: 5
prefix: bitmap

Specifically, the generator will not use internal memory resources to represent the second
stage memory, but will create signals in the top level entity of the core to which an appropri-
ate memory must be connected. For the second stage memory, the external memory must
be a simple dual port memory with fixed (but configurable) read latency. If chosen, details
of the memory signals can be found in the generated Interface Documentation.

type Controls the type of the memory. Choosing type: EXTERNAL turns the memory into
external memory.

readLatency Specifies the read latency of the external memory which must be at least 1
cycle. The generator will automatically build the necessary bypass logic to bridge the read
latency and may instantiate small on-chip ring buffer memories for this purpose.

prefix The prefix to use for the memory signal names in the top level entity port map. For
example, choosing prefix: bitmap will result in signal names of the form bitmap_rd_addr,
bitmap_wr_addr, etc. For details about the signals, see the generated Interface Documenta-
tion.

www.synogate.com Synogate UG (haftungsbeschrinkt)




	Contents
	Introduction
	Functional Overview
	Functionality
	Structure
	Anti-Replay Core Proper
	Packet IF

	Reference Implementation

	Core Generation
	Overview
	Configuration File Basics
	Controlling HDL Generation
	Targeting Synthesis Tools
	Quartus Integration
	Vivado Integration
	GHDL Simulation

	Targeting Specific Technologies
	Controlling Tests and Waveform Export
	Interface and Signal Descriptions

	Parameterizing the Anti-Replay Core
	Clock and Reset
	Packet IF Wrapper
	Anti-Replay Core Proper
	Second Stage Memory


